Learn how to enhance your facility's pneumatic conveying systems at the April 7-9, 2015 Pneumatic Conveying Workshop Series, offered by the University of Pittsburgh's Center for Executive Education. Taught by distinguished faculty members from Pitt's Swanson School of Engineering and accomplished industry experts, the workshop features practical, hands-on examples of best practices and cutting-edge approaches in pneumatic conveying.

Participants will be taught methods for improving operational efficiency and reducing energy costs. They will gain knowledge of fundamental pneumatic conveying systems design principles. In addition, they will learn how to troubleshoot common design errors, evaluate and select the appropriate equipment, and understand reliable design of pneumatic conveying systems, among many other actionable skills. Furthermore, participants will learn the optimal design for the transport of solids, which can be attained by following essential physical principles and guidelines.

Dates
April 7-9, 2015

Fees
$650.00

Who Should Attend
The workshop series is applicable for engineers in a wide variety of industries, as the transport of solids in powder or granular forms is important to the chemical, agricultural science, food processing, pharmaceutical, minerals, plastics, and consumer product industries, among many others. Engineers will learn skills in pneumatic conveying design that can be used to reduce costs in the manufacturing process.
Questions?
If you have any questions, please contact us at 412-648-1600 or by e-mail at executiveed@katz.pitt.edu. Please note the title Pneumatic Conveying in the subject line.

A Hands-on Workshop
In addition to classroom instruction, the workshop series will feature extended time for experiments and problem-solving sessions. The goal is to provide practical knowledge that can be applied immediately to your job. In the evening, you will have the opportunity to network during a special cocktail reception.

View the Workshop Schedule

Topics

- The science of pneumatic conveying, particularly in terms of state diagrams and the boundaries and relationships of flow patterns
- The relationship between gas velocity and particle velocity, saltation velocity, and pickup velocity, among other velocities.
- Material characterization and the measurement of key properties relevant to pneumatic conveying
- Dilute phase conveying mechanisms, including vacuum, pressure, close-loop system, pull-push systems, and more.
- System hardware types, including air mover, feeder, bend, and gas-solid separator, among others.
- Attrition and wear as they relate to dilute phase conveying systems
- Dense phase conveying in terms of basic concepts and classification
- The utilization of air management systems for optimal operation of dense phase conveying
- Practical limitations and common design errors in pneumatic conveying systems
- Key concepts for reliable design of pneumatic conveying systems

Improve Your Skills

- Select the appropriate conveying technology for an application (I.e. Dense vs. dilute)
- Select suitable system components for a given application (I.e. Air movers, feeders, bends, dust collectors, and more)
- Calculate the pressure drop in a dilute phase conveying system
- Optimize the operation of an existing conveying system
Workshop Instructors

The Pneumatic Conveying Workshop Series features faculty from the University of Pittsburgh's Swanson School of Engineering and accomplished practitioners from industry. You will learn from leaders in pneumatic conveying research and application.

View the workshop schedule

George Klinzing

Professor Chemical Engineering - University of Pittsburgh
Full Bio and research papers

Shrikant Dhodapkar

Research Fellow, Performance Plastics Process, Dow Chemical
Adjunct Professor
Swanson School of Engineering
Full Bio and research papers

Paul Solt