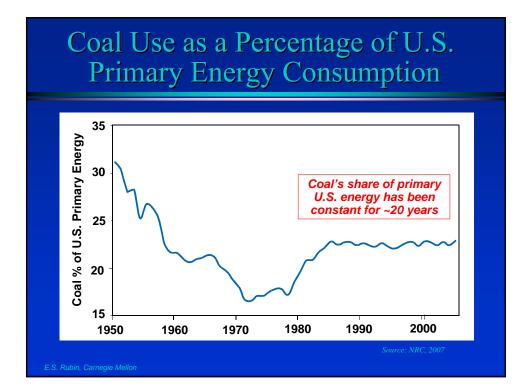
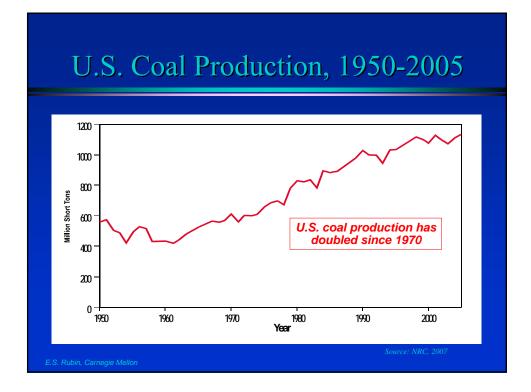
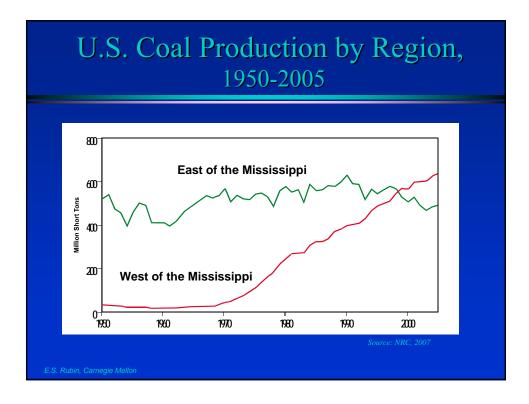
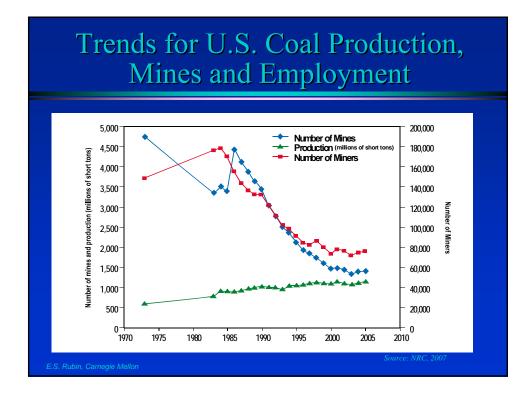
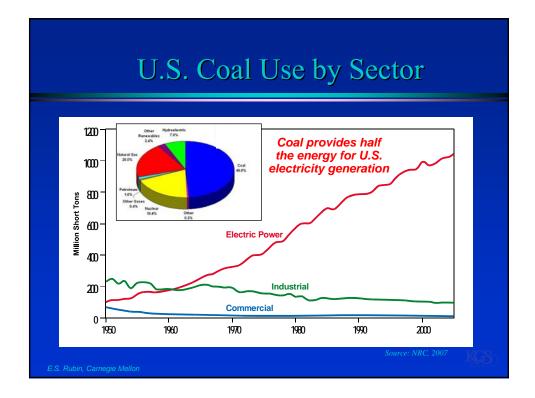

The Future of Coal

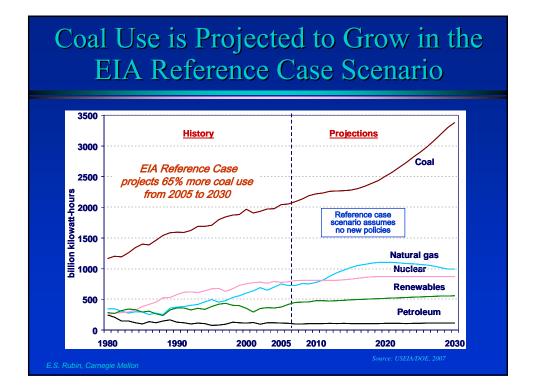

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania


Presentation to the ACS Symposium on The Future of Energy Pittsburgh, PA

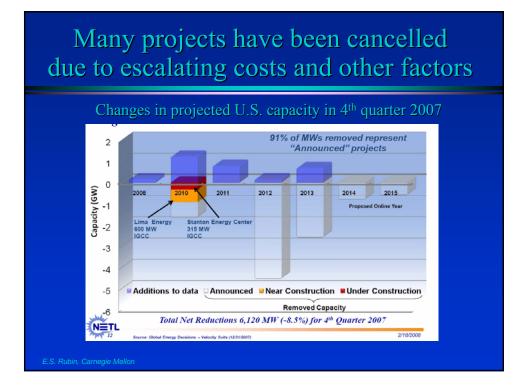

November 12, 2008

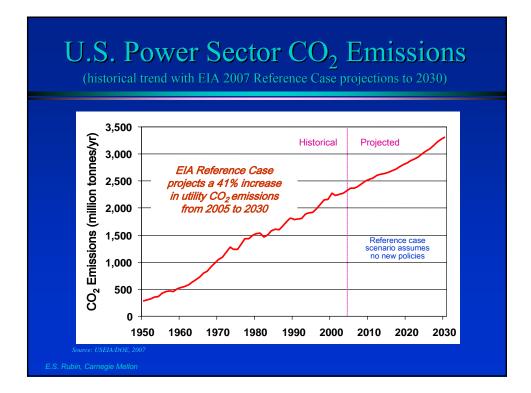










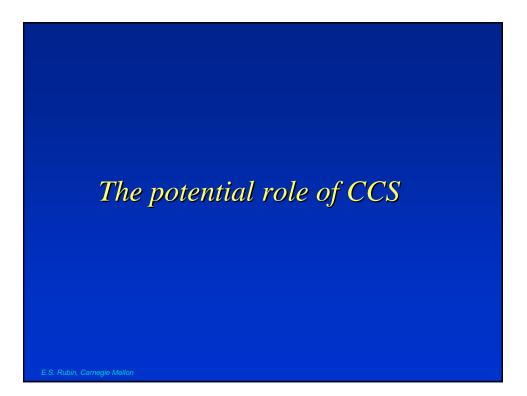


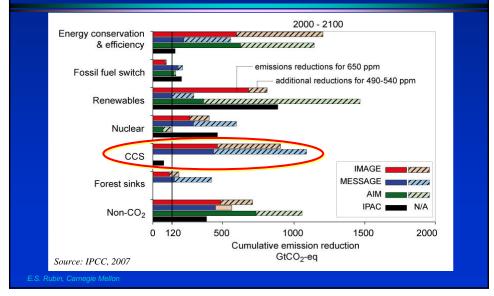
IPCC says prompt action needed to avoid serious climate impacts Fourth IPCC assessment indicates potentially serious impacts for more that a 2°C rise in average global temperature Global avg. Atmospheric **Required change** temperature in global CO₂ stabilization increase over emissions from CO_{2-equiv} (ppm) pre-industrial 2000 to 2050 (2005=375 ppm) 2.0 – 2.4º C 445 - 490 -85% to -50%) 2.8 - 3.2 °C 535 - 590-30% to +5% 4.0-4.9 °C 710 - 855 +25% to +85%

Source: IPCC, 2007

Lower stabilization levels require earlier action to reduce emissions

E.S. Rubin Carnegie Mello


Calls for carbon controls are mounting


Current U.S. Outlook

- I believe it will be very difficult—and perhaps impossible—to undertake new large coal-fired power projects that do not include provisions for CO₂ capture and storage (CCS)
- CCS is critical to the future of coal

E.S. Rubin, Carnegie Mello

IPCC Assessment of Cost-Effective Global Energy Strategies

Status of CCS Technology Pre- and post-combustion CO₂ capture technologies are commercial and widely used in industrial processes; also at several gas-fired and coal-fired power plants, at small scale (~50 MW); CO₂ capture efficiencies are typically 8-90%. Oxyfuel capture still in development. CO₂ pipelines are a mature technology Geological sequestration is commercial on a limited basis, mainly for enhanced oil recovery (EOR); several projects now in operation at scale of ~1 Mt CO₂ /yr. Integration of CO₂ capture, transport and geological sequestration has been demonstrated in several industrial applications—but not yet at an electric power plant, and not yet in the U.S.

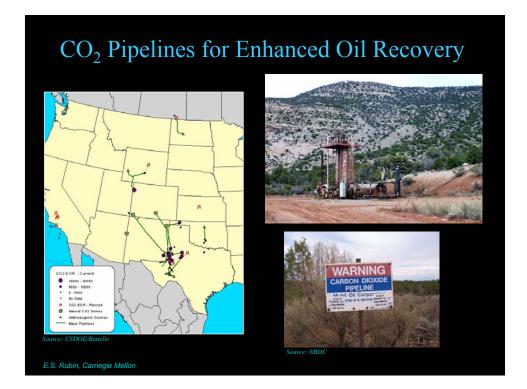
E.S. Rubin, Carnegie Mellon

Examples of Post-Combustion CO₂ Capture at Coal-Fired Plants

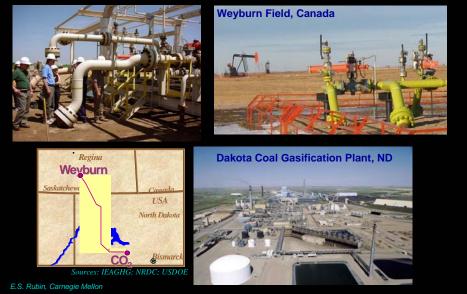
Shady Point Power Plant (Panama, Oklahoma, USA)

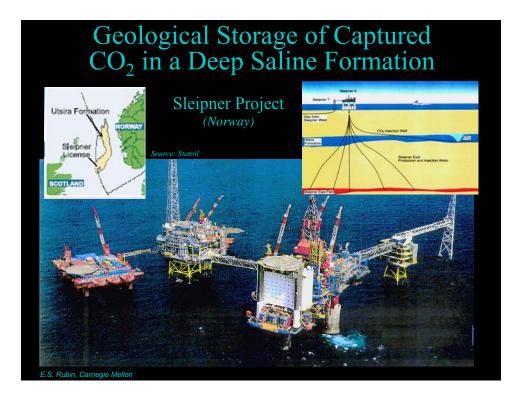
Warrior Run Power Plant (Cumberland, Maryland, USA)

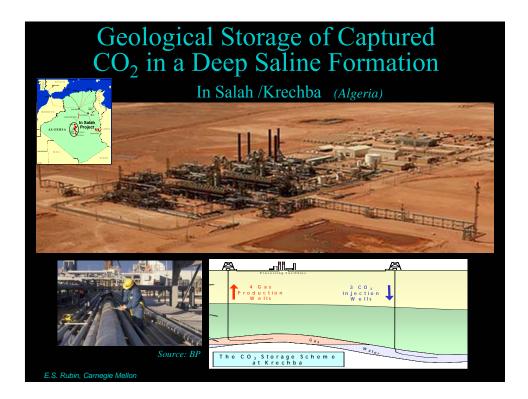
Examples of Pre-Combustion CO₂ Capture Systems



Petcoke Gasification to Produce H₂ (Coffeyville, Kansas, USA)




Coal Gasification to Produce SNG (Beulah, North Dakota, USA)

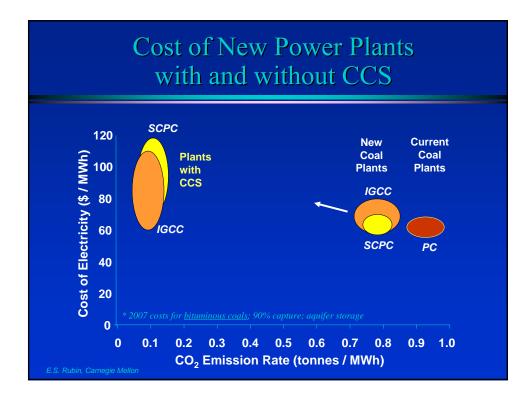


CCS Activity	Project Name	Location	Feedstock	Size MW	Capture Process	CO2 Fate	Start-up
CCS ACTIVITY	Total Lacq	France	Oil	35	Оху	Seq	2008
	Vattenfall Oxyfuel	Germany	Coal	30/300/1000	Оху	Undecided	2008
Worldwide	AEP Alstom Mountaineer	USA	Coal	30	Post	Seq	2008
	Callide-A Oxy Fuel	Australia	Coal	30	Оху	Seq	2009
	GreenGen	China	Coal	250/800	Pre	Seq	2009
	Williston	USA	Coal	450	Post	EOR	2009-15
	NZEC	China	Coal	Undecided	Undecided	Seq	2010
	E.ON Killingholme	UK	Coal	450	Pre	Seq	2011
• Approximately	AEP Alstom Northeastern	USA	Coal	200	Post	EOR	2011
	Sargas Husnes	Norway	Coal	400	Post	EOR	2011
65 CCS projects	Scottish& So Ferrybridge	UK	Coal	500	Post	Seq	2011-2012
1 5	Naturkraft Kårstø	Norway	Gas	420	Post	Undecided	2011-2012
currently	ZeroGen	Australia	Coal	100	Pre	Seq	2012
2	WA Parish	USA	Coal	125	Post	EOR	2012
planned or	Coastal Energy	UK	Coal/Petcoke	800	Pre	EOR	2012
	UAE Project	UAE	Gas	420	Pre	EOR	2012
proposed in	Appalachian Power	USA	Coal	629	Pre	Undecided	2012
	Wallula Energy	USA	Coal	600-700	Pre	Seq	2013
different parts	RWE npower Tilbury	UK	Coal	1600	Post	Seq	2013
*	Tenaska	USA	Coal	600	Post	EOR	2014
of the world	BP Rio Tinto Kwinana	Australia	Coal	500	Pre	Seq	2014
	UK CCS project	υк	Coal	300-400	Post	Seq	2014
	Statoil Mongstad	Norway	Gas	630 CHP	Post	Seq	2014
(here is a sample)	RWE Zero CO2	Germany	Coal	450	Pre	Seq	2015
	Monash Energy	Australia	Coal	60 k bpd	Pre	Seq	2016
	Powerfuel Hatfield	UK	Coal	900	Pre	EOR	Undecided
	ZENG Worsham-Steed	USA	Gas	70	Оху	EOR	Undecided
	Polygen Project	Canada	Coal/Petcoke	300	Pre	Undecided	Undecided
	ZENG Risavika	Norway	Gas	50-70	Oxy	Undecided	Undecided
E.S. Rubin, Carnegie Mellon	E.ON Karlshamn	Sweden	Oil	5	Post	Undecided	Undecided

Is CCS ready for prime time ?

Barriers to CCS Deployment

- No current policy mandate or strong incentives for large reductions in CO₂ emissions
- High cost of current technology
- Lack of a regulatory framework for licensing large-scale geological sequestration projects
- Unresolved legal issues related to sub-surface property rights and long-term liabilities
- Uncertainties about public acceptance
- Lack of experience in utility applications


E.S. Rubin, Carnegie Mellor

Several anticipated CCS projects were recently cancelled

CCS Project Cancellations, 2007–2008							
Project	Location	Technology	ccs	Developers			
FutureGen	USA	275 MW coal IGCC	Pre-/ Aquifer	FG Alliance, DOE			
Clean Coal	Canada	450 MW lignite PC	Oxy-/ Geol.	SaskPower + others			
Peterhead	UK	475 MW gas IGCC	Pre-/ EOR	BP, SSE			
Halten	Norway	860 MW gas NGCC	Post-/ EOR	Statoil, Shell			
Carson *	USA	500 MW petcoke IGCC	Pre-/ EOR	BP, Edison Mission			

No certainty that currently proposed projects will be fully funded and completed as planned

E.S. Rubin, Carnegie Mello

Typical Cost of CO ₂ Avoided (Relative to a <u>SCPC reference plant</u> w/o CCS)							
Levelized cost in 2007 US\$ per tonne CO ₂ avoided (based on current technology w/ bituminous coals)							
Power Plant System (relative to SCPC plant without CCS)	New Supercritical Pulverized Coal Plant	New Integrated Gasification Combined Cycle Plant					
Deep aquifer storage	~ \$70 /tCO ₂	~ \$50 /tCO ₂					
Enhanced oil recovery (EOR) storage	Cost reduced by ~ \$20–30 /tCO ₂						
	l, 2007; DOE, 2007 s of reference plant wit, different avoidance cos						

E.S. Rubin, Carnegie Mel

Everyone Agrees: Multiple largescale projects are needed ...

- To establish the reliability and true cost of CCS in utility applications at commercial scale, for:
 - Alternative technologies (PC, IGCC; new, retrofit)
 - Different coal types (bituminous, sub-bit, lignite)
 - Different geological settings
- To help resolve the legal and regulatory issues of large-scale geological sequestration
- To begin reducing future costs of CCS (via learningby-doing together with sustained R&D)

~10 full-scale projects are needed

E.S. Rubin, Carnegie Mell

Many Government Programs and Public-Private Partnerships Working on CCS

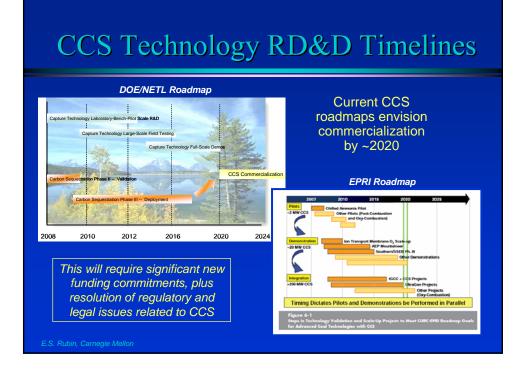
Some of the government programs supporting CCS:

- Australia
- Canada
- China
- European Union
- United Kingdom
- United States

Funding levels and scale of projects vary widely

E.S. Rubin, Carnegie Mellor

What Does a Full-Scale CCS Project Cost?

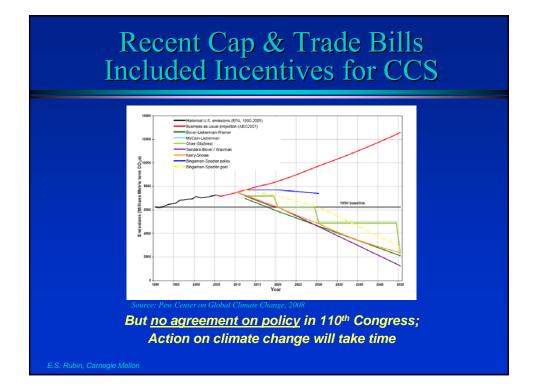

• Total incremental cost of building and operating CCS at a 400 MW_{net} coal-based power plant (PC or IGCC)—including cost of the "energy penalty" (replacement power), plus costs of CO₂ transport and deep aquifer storage (for 5 years):

 ≈ 0.7 to 1.0 billion USD per project

As Best I Can Tell ...

- ... None of the national programs now in place have firm commitments ("money in the bank") for this level of support for multiple CCS projects at a coal-based power plants
- Only a small number of programs come close to the commitment needed for large-scale projects; in most cases, certainty of full funding is still years away, hence, uncertain

E.S. Rubin, Carnegie Mellon



One Recent U.S. Proposal

- In addition to current DOE programs for CCS, the Boucher Bill would:
 - Establish a non-governmental corporation to support commercial-scale demonstrations of CCS for new or retrofit applications for a range of coals and regions
 - Raise ~\$10 billion over 10 years (~\$1B/yr), via fees on all fossil-based electricity delivered by distribution utilities to retail consumers (\$0.43/MWh for coal)


Program would require approval of qualified industry organizations and State regulatory agencies; Revised bill is still pending Congressional action

E.S. Rubin, Carnegie Mello

Will CCS Come to the Rescue ?

- We are very likely to see successful demonstrations of CCS technology; but ...
- Widespread deployment will not occur without a sufficiently strong policy driver

