

Our Energy Future: Opportunities, Risks, Trade-offs

AIChE / ACS The Future of Energy Symposium Duquesne University, Pittsburgh, PA November 12, 2008

Dale L. Keairns, PhD, SAIC Technical Fellow, Energy Solutions Group

French Academy of Sciences 1783 Challenge

- Alkali important to glass, textile and soap industries
- Potash from wood ashes had been source
- Deforestation led to uneconomic source
- Alkali had to be imported potash and soda ash
- Source: plant materials, wood ashes, trona
- France at odds with Great Britain and Europe
- Louis XVI ordered Academy to offer prize produce alkali from sea salt

Nicolas Leblanc – French Physician

- Leblanc devised only process that proved practical 1791
- Basis for development of industrial chemical industry

Growth Business Illustration

Ice Manufacture

Situation Assessment

- 2.7 billion people live on less than \$4/day and cannot access electricity, clean water or sanitation
- Growing demand for energy/ the ways energy is used will change
- Rapid technology diffusion
- Extensive environmental threats/climate change
- Inequalities of income and power (both within and between countries)

Status quo is not sustainable – politically, economically, environmentally

Significant Life-Style Changes

Atmospheric CO₂ Concentration

Climate Change Temperature - Precipitation - Sea Level

~ 126,000 years ago

Today

Human intervention: influences the rate of change Affects Health, Agriculture, Forest, Water Resources, Ecosystems

Graphics - Ron Blakey, Uni. Northern Arizona

Targets for CO₂ Management

Energy Forecasting

Many approaches

- Models: economic development, technology change
- ✓ Extension of trends
- ✓ Scenarios

Limitations

- Failure to capture disruptive events
- ✓ How we view data
- Predictions tell us more about group psychology than reality

U. S. Energy Use: 1950 - 1970

U.S. Energy Use Forecast in 1972

U.S. Actual Energy Use

U. S. Energy Use Forecast

Petroleum Perspective

Resource Control Implications Transfer of Wealth

Production Consumption

Natural Gas Perspective

Illustrating Unconventional Resources

Source of Shale Gas: Diatoms and other microscopic marine organisms

SAIC

The Barnett Shale and other potential shale gas plays in the US.

Projecting Wind Electric Power Capacity

Energy | Environment | National Security | Health | Critical Infrastructure

U.S. Electric Power Capacity Perspective

Technology / Price of Light

Data from William D. Nordhaus 'Do Real-Output and real-Wage Measures Capture Reality? The History of Lighting Suggests Not', published in The Economics of New Goods, edited by Bresnahan and Gordon, 1997 22

From Science to Soli

U.S. Energy Supply Since 1850

SAIC

Data Source: EIA

Today's Grand Challenges

Illustrated Past R&D Grand Challenges

Manhattan Project (1940s)

~ \$25 billion

Apollo Project (1960s)

~ \$91 billion

Characteristics

Complex, Large scale, Multi-disciplinary, Captures the imagination

Characteristics of Grand Challenges: Boundaries Have Changed

	Historic Grand Challenges	Today's Grand Challenges
Activities	Isolated 'just had to get there'	Interdependent; Conflicting Goals
Implementation	Technical Community 'linear thought process'	Diverse Stakeholders: Requires collaborative strategy
Funding	Government 'limited constraint'	Multiple Sources; Competition

Borderless Profession

Disappearance of borders between disciplines Need for new team, organization, communication concepts

What Metrics Guide Decisions? Corn-Ethanol Biofuel

Where Do We Draw the Boundary? Corn-Ethanol Biofuel

What Are the Options? Trade-Offs?

What Are the Options? Trade-Offs?

What Metrics Will We Use?

Plant Design and Economics for Chemical Engineers

Max Peters

1958

Ethylene Chlorine Ethylene dichloride Dollars Dollars

Focus on Changing Behavior, Simple, **Reproducible, Anticipate Change**

- Resource Productivity (e.g. kWhr/GDP, water productivity/hectare yield)
- Resource Use (e.g. availability/use)
- Health (e.g. safety, deaths) ۲
- Environmental (e.g. GHG emissions/GDP)
- Economic
- Security
- Land Use / Sustainability
- Equity (e.g. share of population with electricity)
- **Biodiversity**

Quality of Life / Technology Relationship

Ref. UNDP; HDI = f(life expectancy, education, GDP)

Energy | Environment | National Security | Health | Critical Infrastructure

Chemical Engineering Education

SCALE

U. S. DOE Energy RD&D

Gallagher, K.S., Sagar, A, Segal, D, de Sa, P, and John P. Holdren, "DOE Budget Authority for Energy Research, Development, and Demonstration Database," 2007 Energy | Environment | National Security | Health | Critical Infrastructure

Education Challenge International Competitiveness

Based on OECD Education at a Glance 2007 Data

Age 25-34 Age 55-64

Reflections

- The boundaries have changed
- Complicated trade-offs requires big-picture systems view
- Solution is not at the limits: independence, no water use, no land use, no carbon emissions
- Solutions will not come through individual technologies
- Solvable problem
- Need technology creativity and social creativity
- We have choices: engineers can inform public policy
 - > Will we be an integral part of the solution?
 - > Will we be leaders? What will it take?

